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High-Order ZnS Polytypes and Their Identification 
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The Racah Institute of  Physics, The Hebrew University, Jerusalem, Israel 

(Received 27 October 1971 and in rev&ed form 2 February 1972) 

A list of ZnS polytypes having thirty or more layers in their elementary stacking sequences is presented, 
including seven new polytypes: 90R (18 2 7 3)3; 90R (8 3 5 5 3 6)3; 96R (17 4 6 5)3; 102R (31 3)3; 
34L (7 5 3 5 5 5 2 2); 120R (29 3 2 2 2 2)3 and 120R (13 3 3 5 11 5)3. Polytype identification procedures 
are discussed from the point of view of reliability. It is demonstrated that even for such polytypes un- 
ambiguous identification is possible without exact intensity measurements. For these polytypes, the 
Burgers vector of the generating [00.1] screw dislocation has a length of 90/~ or more. 

Introduction 

ZnS polytypes having thirty or more layers in their 
elementary stacking sequence have unit cells with a 
c dimension of 90 A or more. Such structures will be 
referred to as high-order polytypes. 

Polytype formation in ZnS crystals was shown 
(Alexander, Kalman, Mardix & Steinberger, 1970) to 
be a two-step process: (a) growth of 2H crystals around 
a large screw dislocation and (b) transformation, 
during the cooling period (Mardix & Steinberger, 1970) 
into polytypes. Step (b) is actually a periodic slip process, 
involving expansion of stacking faults, governed by the 
large screw. The Burgers vector of the large screw has the 
length mco, where m is the number of layers in the ele- 
mentary stacking sequence and Co is the distance between 
neighbouring (00.1) layers. This fact, together with the 
finding that apart from the generating screw the poly- 
type regions are practically perfect crystals (Stein- 
berger, Alexander, Brada, Kalman, Kiflawi & Mardix, 
1971), makes ZnS crystals containing high order poly- 
types the object of rather unusual investigations. They 
are of much interest for basic dislocation theory and 
they also serve as a convenient system for studying 
single large dislocations by X-ray topography (Mardix, 
Lang & Blech, 1971). These subjects are beyond the 
scope of normal crystallographic investigations of 
polytypism. 

In the present paper, all fully identified high-order 
ZnS polytypes will be listed. It will be shown that the 
elimination method (Mardix, Kalman & Steinberger, 
1970) used for identification furnishes unambiguous 
results. The applicability of the two-step model of 
polytype formation (Alexander et al., 1970) for these 
high-order polytypes will be also stressed. 

berger, 1970). In this method, the c translation is deter- 
mined from X-ray oscillation photographs by well 
known procedures (Verma & Krishna, 1966). At this 
stage, it is also determined whether the polytype is 
rhombohedral. Subsequently, a representative set of 
reflexion spots, with well-defined hierarchy of inten- 
sities, are selected and indexed; the information on 
this hierarchy is fed into the computer. The com- 
puter program]" is designed in such a way that the in- 
tensities of only those polytypes which have the same 
hierarchy of intensities as the experimental set appear 
in the output. The final determination of structure 
takes place by comparison of all reflexions with 

- m/2 < l<_ m/2; this comparison eliminates those poly- 
types which have the same hierarchy within the selected 
set, but do not fit the total distribution. However, 
the hierarchy of the selected set limits the possibilities 
to such an extent that in most cases only one structure 
is found by the computer. 

For high-order polytypes, this procedure would 
have required very long computer times, if no auxiliary 
information had been fed into the computer. In fact, 
the number of symbols in the Zhdanov sequence was 
always known beforehand from birefringence measure- 
ments (Brafman & Steinberger, 1966) and this was 
used to reduce the number of possible structures. 
Also, in the case of rhombohedral polytypes, inspec- 
tion of the photograph often~ showed whether I - J =  1 
(mod 3) or 1 - J = 2  (mod 3) (Mardix, Kalman & 
Steinberger, 1970). I and J are respectively the number 
of cyclic and anticyclic displacements between neigh- 
bouring layers within the elementary stacking sequence. 
In the first run, only polytypes which have no l 's in 
their Zhdanov symbol were considered. By the proce- 
dure outlined above, a fitting polytype (without l's) 

Method of identification 

The polytypes listed in this paper (Table 1) were identified 
using the elimination method (Mardix, Kalman, & Stein- 

* Present address: University of Rhode Island, Kingston, 
Rhode Island 02881, U.S.A. 

t In all calculations, the Hebrew University's C.D.C. 6400 
computer was used. Maximum storage space used was 13000 
computer words. 

:I: This is very simple e.g. if one of the Zhdanov symbols is 
much larger than the others, especially in polytypes of low 
hexagonality. E.g. in Table 1, the information could be and 
was, indeed, used for 120R (29 3 2 2 2 2)3, but was not used 
for 120R (13 5 11 5 3 3)3. 
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was found,  and  its cyclicity de te rmined  f rom the Zhda-  
n o v  symbol .  All  poly types  hav ing  '1' in thei r  Z h d a n o v  
symbol  and  being o f  this cyclicity were subsequent ly  
checked;  this check gave negat ive results in accord  
wi th  past  experience wi th  mos t  ZnS polytypes.  The  
jus t i f ica t ion  o f  this p rocedure  lies in the fol lowing 
facts :  (a) tha t  the final fit between the calculated and  
observed intensi ty  d is t r ibut ions  is very good ;  (b) tha t  
the value  of  I - J  is no t  too  sensitive to in tensi ty  
changes,  as it can vary  only in steps o f  6. 

Final ly ,  all poly types  wi th  all possible cyclicity values 
and  hav ing  l ' s  in thei r  Z h d a n o v  symbol  were checked,  
p rov ided  they had  the correct  n u m b e r  o f  figures in 
the i r  Z h d a n o v  symbol .  Table  1 also includes some 
re levant  compu te r  t imes;  these should  be useful for  
assessing the capabil i t ies  o f  the m e t h o d  for  o ther  
mater ia ls ,  where it is more  difficult  to  ob ta in  auxi l iary 
i n fo rma t ion .  In such cases and  for  even higher  poly- 
types  the cyclicity a n d / o r  the n u m b e r  of  l ' s  in the 
Z h d a n o v  symbol  should  be de te rmined  at  the outset  
f r o m  the exper imenta l  intensi ty d i s t r ibu t ion  (Mardix ,  
Steinberger  & K a l m a n ,  1970; Dornberger -Sch i f f  & 
Fa rkas - Jahnke ,  197 I). 

Table  1. Lis t  o f  high-order po l y t ypes  f o u n d  in 
vapour-phase  grown Z n S  crystals  

Polytype Computer time for 
identification (sec)* 

(a) (b) (c)t 
90R (18 3 7 2)3 new <5 ~5 8 
90R (8 6 3 5 5 3)3 new ,,~10 20 70 
96R (17 5 6 4)3 new < 5 ,-,5 8 

102R (31 3)3 new 2.5 
34L (7 5 3 5 5 5 2 2) new 240 675 1800 

l 1 4 R  (29 9)3 :~ 2.5 
l 1 4 R  (35 3)3 :l: 2"5 
I14R (21 9 6 2)3 $ 8 
l14R (13 5 2 2 6 2 6 2 ) ~ 220 600 1900 
120R (29 3 2 2 2 2)3 new <12 26 245 
120R (13 5 11 5 3 3)3 new 70 495 
44L (37 7) $ 2.5 
44L (17 6 17 4) $ 9 

* The authors are indebted to the referee for suggesting the 
inclusion of the computer times. The list is incomplete since 
these numbers have not been systematically stored. 
t (a) Considering only polytypes without l 's in the Zhdanov 
symbols. (b) First considering polytypes without l 's and then 
checking polytypes with l's and only one cyclicity. (c) Con- 
sidering all polytypes having the appropriate periodicity and 
hexagonality. 
:I: Already reported: Kiflawi, Mardix & Steinberger (1969). 

N e w  h i g h - o r d e r  p o l y t y p e s  

Seven new h igh-order  po ly types  were found  in four  
vapour -phase  g rown  ZnS crystals. The  new poly types  
are l isted in Table  1, toge ther  wi th  all k n o w n  high- 
order  polytypes.  The  crystals  were g rown at  a b o u t  
1250°C. X-ray  osci l la t ion p h o t o g r a p h s  a b o u t  the c 
axis o f  the crystals  were t aken  using Cu Kc~ radia t ion .  
(10.l) or  (20.1) row lines of  these p h o t o g r a p h s  are 
shown  in Fig. 1. The  observed and  calcula ted intensi-  

ties o f  the X- ray  reflexion spots  o f  the new poly types  
are compa red  in Table  2. 

Table  2. Compar ison  o f  observed and  calculated  intensi- 
ties o f  the new po l y t ypes  l is ted in Table  1 

, Observed Calculated 

90R (18 3 7 2)3 
1 vw 0.39 
4 w 1.10 
7 w (7 ~ 4) 1-03 

10 a 0.09 
13 m 2.89 
16 m (16~ 13) 2.87 
19 a 0.09 
22 m (22> 16) 3.82 
25 m (25 > 22) 4.59 
28 vvw 0-33 
31 m (31 ~22) 3.28 
34 m (34 ~ 25) 4.96 
37 vw 0-57 
40 w 1.95 
43 m 4.09 

- 2 vw 0.44 
- 5 a 0.02 
- 8  w ( - 8 ~  -14)  0.81 

- 11 w 0-96 
- 1 4  w 0.87 
- 1 7  w ( - 1 7 >  -11)  1-26 
- 20 w 0.90 
- 23 m ( -  23 > 25) 5.66 
- 26 s ( -  26 > - 35) 8.04 
- 29 vvs 100.00 
- 32 vs 28.67 
- 3 5  s 6"53 
- 3 8  s ( - 3 8 >  -26)  9"11 
-41  w ( -41  > -44)  1.62 
- 4 4  w 0.84 

90R(8 6 3 5 5 3)3 
1 w (1 > 14)  1 .48  
4 vw 0.65 
7 w 1.33 

10 m 6.60 
13 vw 0.54 
16 m 6.17 
19 s (19 ~ 37) 17.90 
22 m 10.34 
25 w 1.89 
28 vvs 73"04 
31 vs 28"51 
34 s (34 > 37) 22-28 
37 s 18.47 
40 s 13.55 
43 w 3-95 

- 2  vvw 0.21 
- 5  w ( - 5 > 1 )  2"95 
- 8 vvw ( -  8 > - 2 )  0"30 

- 11 m 6"46 
- 1 4  w 0"86 
- 1 7  s 13"41 
- 2 0  m 7.83 
- 23 s 20"77 
- 2 6  w 3"14 
- 29 vvs 100"00 
- 3 2  vs 39.81 
- 3 5  w ( - 3 5  ~, - ! 4 )  1"19 
--38 vs 35"19 
-41  vw 0"46 
--44 m 6"32 
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Fig. 1. (10./) or (20.l) row lines of  oscillation photographs about the c axis of  the new polytypes. Cu K radiation, 60 mm diam- 
eter camera. Magnification x 3. The zero line is indicated by an arrow. (1) 90R (18 3 7 2 )3; (2) 90R (8 6 3 5 5 3)3; 
(3) 96R (17 5 6 4)3 [(20./) row line]; (4) 102R (31 3)3; (5) 34L(7  5 3 5 5 5 2 2) ; (6)  120R (29 3 2 2 2 2)3;(7) 120R (13 5 
11 5 3 3)3. 

[To face p. 2 1 1 1  
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96R (17 

1 
4 
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10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
4O 
43 
46 

- 2  
- 5  
- 8  

- 1 1  
- 1 4  
- 1 7  
- 2 0  
- 2 3  
- 2 6  
- 2 9  
- 3 2  
- 3 5  
- 3 8  
- 4 1  
- 4 4  
- 4 7  
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T a b l e  2 ( c o n t . )  

102R (31 3)3 

1 
4 
7 

10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 
46 
49 

- 2  
--5 
- 8  

--11 
--14 
--17 
- 2 0  
--23 
--26 
--29 
--32 
--35 
--38 
- 4 1  
- 4 4  
--47 
- 5 0  
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VW 

VW 
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W 

OrS 

W 
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W 

W 

W 

VVW 
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OW 

VW 

VW 

W 

W 

W 

W 

W 

W 

W 

W 

W 

W 

W 
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Calculated 1 Observed 

3 4 L ( 7  5 3 5 5 5 2 2) 

0.42 0 m (0 > 1) 
2.60 1 m 
0.86 2 v w  (2 ,-~ 4) 
0.67 3 vw (3 > 5) 
0"71 4 v w  (4> 3) 
2"23 5 v w  

0"68 6 w 
(22 > 25) 17" 13 7 s 

14"90 8 m 
1"58 9 s ( 9 > 7 )  

32"22 10 s (10> 9) 
(34> 25) 21.07 11 s (11 > 10) 

0"89 12 s (12> 13) 
(40 > 25) 19.34 13 s 

9.48 14 s (14> 15) 
0-19 15 s 

( - 2 >  - 14) 1.32 16 s 
1"81 17 v w  

1"53 - 1 vw 
1.68 - 2 v v w  

0.91 - 3  v w  ( - 3 >  - 1 )  
2-04 - 4  w 
2"04 - 5  v w  ( - 5 >  - 3 )  
8.50 - 6  s 

( -  26 > - 23) 12" 54 - 7 m 
83"81 - 8  v w  ( -  8",~ - 3 )  

100"00 - 9  w ( - 9 >  - 11) 
89"73 - 10 v v s  

13 -23  - 11 w 
2"75 - 12 s 
0"72 - 13 m ( -  13 > - 7 )  
2.65 - 14 v s  

- 15 v w  ( -  15> - 16) 
- 16 v w  ( - 1 6 >  - 17)  
- 17 v w  

0.002 
(4> 1) 0"04 120R(29 3 2 2 2 2)3 

0-11  1 w 
(10>7)  0.21 4 w 
(13 > 10) 0"34 7 w 

0.47 10 v v w  (10> 13) 
(19> 16) 0"61 13 v o w  

(22> 19) 0.73 16 vw 
0.83 19 v v w  (19> - 1 1 )  
0.90 22 a 
0"94 25 w 

100.00 28 m 
0.91 31 m 
0.85 34 m 
0.77 37 w 
0.68 40 v r w  

0"58 43 v w  

0.01 46 v w  

( -  5 > - 2) 0"06 49 v v w  

0.14 52 v w  

0.25 55 w 
( - 1 4 >  - 11) 0"38 58 m 

0"52 - 2  v w  ( - 2 >  - 8 )  
0.65 - 5 v w  ( - 5 > - 8) 

( - 2 3 >  - 2 0 )  0.77 - 8  v w  ( - 8 >  16) 
( - - 2 6 >  - 2 3 )  0.86 - 1 i v v w  ( -  11 > 10) 

0.91 - 14 vvw ( -  14> - 11) 
0.94 - 17 v w  

0"93 - 2 0  v w  ( - 2 0 >  - 17) 
0.89 - 23 v w  ( -  23 > - 20) 
0"82 - 26 w ( -  26 > - 32) 
0.74 - 29 w ( - 29 > - 26) 
0"65 - 3 2  w 
0.55 - 35 m ( -  35 > - 59) 

Calculated 

5"59 
4"19 
1"91 
1 "52 
1 "97 
1 "27 
2"78 

18"11 
4"93 

20"65 
39"66 
46"21 
20"94 
15"35 
19"09 
13"44 
16"36 

1"52 
1 "23 
0"73 
1 "39 
2"85 
1 "80 

13"55 
5"83 
1 "48 
3"38 

100"00 
2"77 

18"20 
7"23 

53"95 
2"20 
1 "95 
1 "52 

1"35 
1 "70 
1 "20 
0"23 
0"11 
0"63 
0"42 
0"03 
1"81 
5"52 
7"33 
4"99 
1"33 
0"16 
1 "07 
1"15 
0"23 
0"87 
3"66 
5"71 
1 "06 
1 "05 

0 " 7 6  
0"32 
0"38 
0"67 
0"77 
1 "37 
2"76 
3"16 
2"18 
7"32 
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Table 2 ( c o n t . )  

l Observed Calculated 
- 38 vs 65.26 
- 41 vvs 100.00 
- 44 vvw 0.25 
-47 w 2.50 
-50  vw 1.16 
- 53 vw 0.65 
- 56 w 2-98 
-59  m 5.22 

120R (13 5 11 5 3 3)3 
1 v w  (1  > 13) 1.26 
4 vvw 0.09 
7 vw (7< 1) 0.83 

10 vw 0.98 
13 vw 0.71 
16 vw 0.61 
19 vw 0.68 
22 m (22 < 28) 5.33 
25 w 1.73 
28 m (28 > 46) 7.11 
31 w (31 > 25) 3-94 
34 vw 0"82 
37 s (37 > 43) 20.21 
40 m (40 > 28) 8.49 
43 s 15.28 
46 m 6.03 
49 vw 1 "26 
52 w (52> 55) 5.41 
55 w (55 > 58) 4.28 
58 w 3.40 

- 2 vvw ( -  2 > - 8) 0.30 
- 5 a 0.005 
- 8  vvw 0-17 

- 11 vvw ( -  11 > - 8) 0.30 
- 14 vvw ( -  14> -8)  0.29 
- 1 7  w 3 . 4 0  

-20  w 2.59 
-23 w (-23 > - 17) 5.69 
- 26 vw 0.90 
- 29 vvw 0.09 
- 32 vw ( -  3 2  > - 2 6 )  1 " 4 7  

- 35 w ( -  35 > - 20) 3.88 
- 38 vvs 100.00 
-41 w 3.57 
- 44 vs 45.03 
- 47 m 7-60 
- 50 vvw 0.35 
- 53 w 4.08 
-56  vw 1"04 
- 59 vw 1 " 0 2  

D i s c u s s i o n  

A .  T h e  r e l i a b i l i t y  o f  t h e  i d e n t i f i c a t i o n  m e t h o d  u s e d  

While the paper by Mardix, Kalman & Steinberger 
(1970) on the identification procedure used in the 
present paper and in previous ones was in press, a 
paper by Dornberger-Schiff and Farkas-Jahnke (1970) 
appeared, describing an elegant direct method for the 
identification of polytypes. The essentials of the method 
were published previously (Farkas-Jahnke, 1966); it 
was applied for identifying a SiC polytype by Gomes de 
Mesquita (1968) and for a ZnS polytype by Farkas- 
Jahnke and Dornberger-Schiff (1970). A similar 
method was also proposed by Tokonami Hosoya 
(1965), but not successfully applied (Tokonami, 1966). 

In their paper, Dornberger-Schiff and Farkas-Jahnke 
express their doubt as to whether it is possible to deter- 
mine reliably, by any method, the structure of a high- 
order polytype without making very exact intensity meas- 
urements. Since for the method used in the present 
paper no such measurements are necessary, its relia- 
bility will now be discussed. 

A reliable identification method has to take into 
account all polytypes compatible with the experimental 
information available, and has to involve strict final 
comparison of calculated and observed intensities for 
all reflexions with - m / 2  < l <  m / 2 .  If only the period 
m of the polytype is known, the first stage would 
involve in olar case consideration of a l l  polytypes of 
the given periodicity. Of course, this would require 
very long computer times for high-order polytypes. 
Preliminary information such as (a) percentage of 
hexagonality, (b) cyclicity, (c) number of l 's  in the 
Zhdanov symbol (Dornberger-Schiff, Schmittler & 
Farkas-Jahnke, 1971) and (d) the assumption that 
only certain sequences and figures appear in the 
Zhdanov symbol can reduce drastically, at the outset, 
the number of structures to be considered. However, 
only preliminary information having a sound physical 
basis should be taken into account. For example, it 
has been commonly assumed that the Zhdanov sym- 
bols of SiC polytypes contain only the figures 2, 3 and 
4. However, the polytype 24R (5 3)3, having the figure 
5 in its Zhdanov symbol was identified in SiC (Gomes 
de Mesquita, 1965). For the polytypes presented here 
only information (a), obtained directly from birefrin- 
gence measurements, was used. It seems to be likely, 
however, that for even higher polytypes (b) and (c) 
will have to be also supplied at the outset. These 
would involve rather exact intensity measurements. 

At the final stage the intensity distribution of all 
reflexion spots is compared with the calculated inten- 
sities. This kind of comparison, where the hierarchy is 
emphasized, in contrast to refinement by means of R 
values cannot give a wrong answer, though in prin- 
ciple it may lead to more than one polytype ( e . g .  

homometric polytypes). In this respect, it is instructive 
to consider the case of two polytypes: 66R (8 7 4 3)3 
and 66R (7 7 5 3)3. The polytype identified by Farkas- 
Jahnke and Dornberger-Schiff by their method was 
66R (7 7 5 3)3. At the stage before the last they obtained, 
for their crystal, both structures and eliminated 66R 
(8 7 4 3)3 essentially by comparison of the intensity 
distributions. This procedure is certainly correct, but 
we contest the conclusion that 'intensities measured 
quantitatively and with sufficient accuracy are needed 
for a reliable determination of the polytype'. As an 
illustration, in Table 3, the observed and calculated 
intensity distributions of the same structures, 66R 
(8 7 4 3)3 and 66R (7 7 5 3)3 are given, taken from a 
previous publication (Kiflawi & Mardix, 1969). It is 
seen that although the intensities were determined vis- 
ually, both identifications are unambiguous: consider 
e . g .  the reflexions w i t h / = 7 ,  10, 16, 28 and - 8 .  
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Both the elimination method and the direct method 
of Dornberger-Schiff and Farkas-Jahnke are in full 
accord with the criteria of reliability as discussed 
above. The elimination method needs, however, much 
less exacting experimental work (usually no quantita- 
tive determination of intensities) and is much faster. 
Going to higher-order polytypes only increases, in this 
case, the computer time, without causing any addition- 
al difficulty. Moreover, it should be pointed out 
again (see also Mardix et al., 1970) that the probability 
for ambiguity actually decreases with increasing poly- 
type order m: the number of possible polytypes in- 
creases roughly as 2 m - l / m ,  while the number of pos- 
sible intensity hierarchies increases approximately as 
m!. 

Dornberger-Schiff & Farkas-Jahnke (1970) drew 
attention to the possibility of occurrence of homo- 
metric polytypes. 

We would like to note that homometric polytypes 
can be classified into two categories. The first category 
consists of those mentioned by Dornberger-Schiff and 
Farkas-Jahnke, which may be called antipolar homo- 
metric pairs. It should be noted that none of the nota- 
tions for polytype structures used at present does 
provide for a convention to distinguish between the 
two members of such pairs. The second category con- 
tains homometric polytypes having intrinsically differ- 
ent Zhdanov symbols,* for example the hypothetical 
structures 48L (15 9 3 12 3 6), 48L (15 12 3 6 9 3) and 
48L (18 6 6 12 3 3). In such a case all structures must 
be mentioned. Both the direct method and the elimina- 
tion method automatically reveal all homometric 
structures. 

* No such cases have been encountered so far. 

B. Format ion  o f  the p o l y t y p e s  

Though the main subject of this paper is the struc- 
ture and identification of high-order polytypes, it 
should be emphasized that the model of polytype for- 
mation proposed by Alexander et al. (1970) is in full 
accord with the features of the high-order ZnS poly- 
types as well. In short, the crystals containing these 
polytypes grow with the 2H wurtzite structure around 
a giant screw dislocation (Mardix, Lang & Blech, 1971) 
and transform during the growth process (Mardix & 
Steinberger, 1970) into polytypes by virtue of the 
expansion of stacking faults which have negative energy 
(Blank, Delavignette & Amelinckx, 1962). All the 
experimental evidence for this mechanism, brought for- 
ward by Alexander et aL (1970), pertains to the high- 
order polytypes as well: the polytypes in a given 
crystal belong to the same family; facets of polytypic 
regions and linear markings are tilted in accord with 
the periodic slip process (Kiflawi, unpublished results); 
the giant screw dislocations are observable by X-ray 
topography; there are no polytypes of odd periodicity. 
On the other hand, no indications were found with 
these polytypes which would favour a recent hypothesis 
(Rai, 1971) for polytype formation in ZnS. This 
author suggested that periodic occurrence of f.c.c. 
microtwins in 2H and the presence of growth faults 
make possible direct growth of ZnS polytypes around a 
screw dislocation in a somewhat similar fashion as 
had been proposed for SiC (Frank, 1951; Mitchell, 
1957; Verma & Krishna, 1966). The evidence that the 
tilt (and the accompanying structure change) occurs 
while the crystals are cooling down (Mardix & Stein- 
berger, 1970) and the absence of temperature changes 
during growth (which would make possible the appear- 
ance of microtwins as well as the absence of odd-order 

Table 3. Compar ison  o f  the observed and  calculated  intensi t ies o f  the p o l y t y p e s  66R (7 7 5 3)3 and  

Observed intensities 

66R (8 7 4 3)a 

Calculated intensities 
l 66R (7 7 5 3)3 66R (8 7 4 3)3 66R (7 7 5 3)3 66R (8 7 4 3)3 
1 v w  v w  (1  > 4 )  1 " 2 6  1"14 
4 vw vw (4 ~ - 8) 1"49 0"72 
7 vvw m 0"37 7"95 

10 m (10> 13) vvw (10>28) 11"55 0"31 
13 m (13 > 31) w 7.16 4"02 
16 w s 2"11 25"98 
19 vs (19 > 25) s (19 > 22) 61 "38 37"15 
22 vs s (22 > 16) 32"00 31 "70 
25 vs (25 > 22) vs 44" 16 76" 18 
28 s vvw (28> --5) 16.21 0.18 
31 m m 4"73 6"36 

- 2  w w 2"85 3-41 
-- 5 vw vvw 1 "47 O" 15 
-- 8 m ( -  8 ,~ 31) vw 4"20 0.76 

-11 m ( - 1 1 ~ - 8 )  in ( -11>  -14) 4.31 12.81 
- -  14 s m 13"16 8"30 
-- 17 s ( -  17 ~ 28) m ( -  17> - 1 l) 18"13 15"18 
-- 20 vs vs 50"04 52"46 
- 23 vvs vvs 100"00 100-00 
--26 w w ( - 2 6 ~  -2)  2"13 3"59 
-29 s ( - 29>  -17) m ( -  29,~, -17) 24.31 16.69 
- -  32 w ( -  32 > - 26) m ( -  32 < - 29) 3-28 9"70 
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polytypes in vapour-phase grown ZnS) are both in 
disaccord with Rai's proposal. It should also be 
noted that Rai does not mention the fact that stacking 
faults have negative energies in 2H in a wide tempera- 
ture range. This fact is closely related to the rarity of 
occurrence of figure 1 from the Zhdanov symbol. 
Though Rai's hypothesis also deals adequately with 
the 'absence of the l 's ' ,  it contradicts a wide range of 
experimental facts mentioned above. 

Conclusions 

The highest polytype identified in ZnS has 44 layers in 
its elementary stacking sequence (Table 1). Thus, the 
length of the Burgers vector of the generating screw 
dislocation of the crystal containing polytypes of this 
family is about 140 ~.  

Both the 'direct method' and the 'elimination 
method' are reliable for polytype identification, the 
second being simpler and faster. Both are superior 
to the trial and error procedures used for polytype 
identification, as the latter do not seem to fulfil the 
criteria of reliability. 

The authors wish to thank Professor E. Alexander 
for helpful discussions. Mr I. Natanson grew the 
crystals and Mr A. Kessar gave valuable technical 
assistance. 

References 

ALEXANDER, E., KALMAN, Z. H., MARDIX, S. ,~ STEIN- 
BERGER, I. T. (1970). Phil. Mag. 21, 1237. 

BLANK, H., DELAVIGNETTE, P. & AMELINCKX, S. (1962). 
Phys. Stat. SoL 3, 1660. 

BRAFMAN, O. (~ STEINBERGER, I. T. (1966). Phys. Rev. 143, 
501. 

DORNBERGER-SCHIFF, K. ,~ FARKAS-JAHNKE, M. (1970). 
Acta Cryst. A26, 24. 

DORNBERGER-SCHIEF, K., SCHMITTLER, H. (~ FARKAS- 
JAHNKE, M. (1971). Acta Cryst. A27, 216. 

FARKAS-JAHNKE, M. (1966). Acta Cryst. 21, A 173. 
FARKAS-JAHNKE, M. (~ DORNBERGER-SCHIFF, K. (1970). 

Acta Cryst. A26, 35. 
FRANK, F. C. (1951). Phil. Mag. 42, 1014. 
GOMES DE MESQUITA, A. H. (1965). Acta Cryst. 18, 128. 
GOMES DE MESQUITA, A. H. (1968). ,4cta~Cryst. B24, 

1461. 
KIFLAWl, I. & MARDIX, S. (1969). ,4cta Cryst. B25, 1195. 
KIFLAWl, I., MARDIX, S. & STEINBERGER, I. T. (1969). 

Acta Cryst. B25, 1581. 
MARDIX, S., KALMAN, Z. H. & S'rEINBERCER, I. T. (1970). 

Acta Cryst. A26, 599. 
MARDIX, S., LANG, A. R. & BLECH, I. (1971). Phil. Mag. 24, 

683. 
MARDIX, S., STEINBERGER, I. T. & KALMAN, Z. H. (1970). 

,4cta Cryst. B26, 24. 
MARDIX, S. (~ STEINBERGER, I. Z. (1970). J. Appl. Phys. 41, 

5339. 
MITCHELL, R. S. (1957). Z. Kristallogr. 109, 1. 
RAt, K. N. (1971). ,4cta Cryst. A27, 206. 
STEINBERGER, I. T., ALEXANDER, E., BRADA, Y., KALMAN, 

Z. H., KIFLAWI, I. & MARDIX, S. (1971). J. Cryst. Growth. 
In the press. 

TOKONAM1, M. (1966). Miner. J. Japan, 4, 401. 
TOKONAMI, M. &; HOSOYA, S. (1965). Acta Cryst. 18, 908. 
VERMA, A. R. &~KRISHNA, P. (1966). Polytypism and Poly- 

morphism in Crystals, pp. 166,.248..New York: John Wiley. 

Acta Cryst. (1972). B28, 2115 

Structure du Pentafluorodib6ryllate CsBezFs 

PAR Y. LE FUR ET S. ALI~ONARD 

Rayons X, C.N.R.S., Cedex 166, 38 Grenoble Gare, France 

(Re¢.u le 17 janvier 1972) 

The structure of CsBe2F5 has been studied by X-ray and neutron diffraction. This pentafluorodiberyllate 
is cubic, space group P4132. The unit cell, with a= 7.936 .~, contains four molecules of CsBezFs. The 
structure is characterized by the complex succession of linked ten-membered rings of BeF4 tetrahedra 
lying parallel to the [110] and [111] directions. The other pentafluorodiberyllates of potassium, ammo- 
nium, rubidium, thallium and the high temperature form of CsBezF5 have a sheet structure. 

Introduction 

Dans une pr6c6dente note (Le Fur, 1972), nous mon- 
trons que T1Be2F5 de mame que RbBe2F5 (et probable- 
ment NH4BezF5 et KBe2Fs) pr6sentent une structure 
'en couche', caract6ris6e par la pr6sence de feuillets 
Be4F10 perpendiculaires ~t un axe pseudo-hexagonal. 

Les donn6es cristallographiques indiqu6es par 
Breusov & Simanov (1959) en ce qui concerne la forme 
fl-CsBe2Fs, stable 5. temp6rature ordinaire, semblent 
indiquer un type de structure diff6rent. Aussi avons- 
nous repris l'6tude de ce compos6 et nous montrerons 
qu'effectivement il ne poss~de pas une structure 
'en couche'. 


